

Mesh-Free Applications for Static and Dynamically Changing Node Configurations

Natasha Flyer

Computational Information Systems Lab National Center for Atmospheric Research Boulder, CO

Meshes vs. Mesh-free discretizations

Structured meshes:

FD, DG, FV, Spectral Elements
Requires domain decomposition /
curvilinear mappings

Unstructured meshes:

FEM, DG, FV, Spectral Elements Improved geometric flexibility; requires triangles, tetrahedral, etc.

Mesh-free:

RBF-FD

(Radial basis Func.-generated Finite Differences)

Total geometric flexibility; needs node locations, but no connectivites, e.g. no triangles or mappings

General RBF-FD Concept

Simplicity of RBF-FD: Mesh-Free method

Ex.: Stencil of n = 21 nodes

Get Gaussian matrix A, use Gaussian elimination to solve for weights

$$\begin{bmatrix} Exp(-r_{11}^2) & Exp(-r_{12}^2) & \dots Exp(-r_{1n}^2) \\ \vdots & \ddots & \vdots \\ Exp(-r_{n1}^2) & Exp(-r_{n2}^2) & \dots Exp(-r_{nn}^2) \end{bmatrix} \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} d/dx[Exp(-r_1^2)]|_{\bullet} \\ \vdots \\ d/dx[Exp(-r_n^2)]|_{\bullet} \end{bmatrix}$$

Coding RBF-FD Method is FAST and EASY

```
IDX = knnsearch(xyz,xyz,'K',n); % n is stencil size
for k = 1:N
                                 % Loop over all points N in domain
  X = xyz(IDX(k,:),:);
                                  % nodes in the kth stencil
  r2 = (X(:,1) - X(:,1)').^2 + ...
       (X(:,2) - X(:,2)').^2 + ...
       (X(:,3) - X(:,3)').^2; % Distance matrix
  A = \exp(-r2);
                                  % RBF-FD matrix
  RHS dx = -2*(X(:,1) - X(k,1)).* exp(-r2); % derivative of GA w.r.t x,y,z
  RHS dy = -2*(X(:,2) - X(k,2)).* exp(-r2);
  RHS dz = -2*(X(:,3) - X(k,3)).* exp(-r2);
  Dx(k,:) = A\RHS dx; % Differentiation matrices (DM)
  Dy(k,:) = A \setminus RHS dy;
  Dz(k,:) = A \setminus RHS dz;
end
```

Have DMs for any geometry and point distribution in 3D space

Translating Static Node Refinement (Flyer and Lehto, 2010, JCP)

$$\partial h/\partial t = \vec{U}(\omega(lat.), long., t) \cdot \nabla h$$

http://web.maths.unsw.edu.au/~rsw/Sphere/

Comparison between ME, MD, Refined, and other methods

Method	N	∆t (mins.)	RMS error
RBF, refined	900	60	5e-3
RBF, ME	3136	60	4e-3
RBF, MD	3136	60	5e-3
DG	9600	6	7e-3
FV	38,400	30	2e-3
FV, AMR	2500 to 165K	Variable	2e-3

How we Cluster Nodes and Variable Shape Parameter

Fine features in flow are formed where ω is large

use ω to assign charge distribution for node repel

$$\omega(lat.) \propto \mathrm{sech}^2(lat.) \tanh(lat.) \longrightarrow q(lat.) = [0.1 + c * \omega(lat.)]^{-1}$$

When clustering nodes, the shape parameter of the Gaussian $Exp[-(\varepsilon r)^2]$ must scale over the domain to avoid ill-conditioned matrices and Runge phenomena

Rule-of-Thumb: **€** ∝ Inverse of Euclidean distance to nearest neighbor

$$\omega(lat.) \longrightarrow q(lat.) \longrightarrow Node distribution \longrightarrow \varepsilon$$

Effect of Clustering on Error

Dynamic Node Refinement: Simple Tropical Cyclogenesis

(in collaboration with Erik Lehto)

Barotropic Vorticity Equation

$$\frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} + \beta v = 0 \qquad \nabla^2 \psi = \zeta \qquad \qquad \psi = \text{streamfunction}$$

$$\zeta = \text{relative vorticity}$$

$$u = -\frac{\partial \psi}{\partial v} \quad v = \frac{\partial \psi}{\partial x}$$

- We do not know apriori where fine features will occur
- Need a good Monitor Function for node adaptation
- Generally, takes the form $M = M(\nabla f)$, f is a physical feature of the flow

$$M(x, y, t) = \sqrt{1 + \frac{|\nabla \zeta|^2}{\alpha}}$$
 α is a scaling parameter

Steps in implementation

- 1. *M* at a given time is approximated with RBFs
- 2. Assign charge distribution according 1/M and repel
- 3. Evaluate solution at new pts. via RBF interpolation
- 4. Calculate spatially variable ϵ and recalculate RBF differentiation matrices

Coupled Reaction-diffusion equations over irregular surfaces (Piret, JCP 2012)

The *Brusselator equations* (Alan Turning) model pattern formation in nature, Solved by RBF over the surface of a frog

Snapshots from a computed time evolution for two different parameter regimes

- RBF Node layout

 AIM@Shape Online Repository

Poison dart frog

Movie Courtesy of Grady Wright

Node generation algorithms

Iterative-Type Schemes

For a given number of nodes, the quality of the distribution depends on how soon the iteration is stopped.

- Min. energy distribution
- Voronoi relaxation
- Delaunay triangulations
 - DistMesh (Persson-Strang)
 - Gmsh (Geuzaine-Remacle)

Advancing-Front Type Schemes

For a given number of nodes, Start at a boundary and advance forward until the domain is filled.

- Dithering for half-tone images

Notice nice hex pattern.
Instead of changing width of dots, we change density of dots. We start at bottom boundary and march upward until domain is filled

Half-tone image Human eye

Distributing variable node density on sphere

(Fornberg and Flyer, 2015)

Below: Gray scale rendering of the file topo.mat in Matlab's Mapping toolbox

Top right: Advaniong Front Algorithm

N = 105,419 nodes rendering of the topo map aboveComputational speed in MATLAB still around11,000 nodes per second.

Next step in modeling (Bayona et al. 2015): Take elevation physically taken into account

3D Elliptic PDE: Modeling Electrical Currents in the Atmosphere

Sparsity pattern of 3D elliptic operator (99.998% zeros)

After using reverse Cuthill- McKee

Before any node reordering

Result: Testing with data, 4.2M nodes 100 km. lat. – long. By 600m vertical, 31 mins on laptop using GMRES

GitHub Open Source Code:

Bayona et al., A 3-D RBF-FD solver for modelling the atmospheric Global Electric Circuit with topography (GEC-RBFFD v1.0), Geosci. Model Dev. 2015.

2D Compressible Navier-Stokes with Topography using RBF-FD

$$\frac{\partial \mathbf{u}}{\partial t} = -\left(\mathbf{u} \cdot \nabla\right) \mathbf{u} - c_p \theta \nabla P - g \mathbf{k} + \mu \Delta \mathbf{u}, \quad \text{momentum}$$

$$\frac{\partial \theta}{\partial t} = -\left(\mathbf{u} \cdot \nabla\right) \theta + \mu \Delta \theta, \quad \text{energy}$$

$$\frac{\partial P}{\partial t} = -\left(\mathbf{u} \cdot \nabla\right) P - \frac{R}{c_v} (\nabla \cdot \mathbf{u}) P, \quad \text{mass}$$

Schematic node layout

Movie Courtesy of Gregory A. Barnett

Simulation of a cold downdraught in a dry atmosphere at 300K

Recent Review Material for RBF

- 1. N. Flyer, G.B. Wright, and B. Fornberg, 2014. Radial basis function-generated finite differences: A mesh-free method for computational geosciences, Handbook of Geomathematics, Springer-Verlag
- 2. B. Fornberg and N. Flyer, 2015

 Solving PDEs with Radial Basis Functions,
 Acta Numerica.
- 3. B. Fornberg and N. Flyer, 2015

 A Primer on Radial Basis Functions with

 Applications to the Geosciences,

 SIAM Press.

imer on Padial Pagia

A Primer on Radial Basis Functions with Applications to the Geosciences

BENGT FORNBERG

University of Colorado Boulder, Colorado

NATASHA FLYER

National Center for Atmospheric Research Boulder, Colorado

CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS

SPONSORED BY
CONFERENCE BOARD OF
THE MATHEMATICAL SCIENCES

SUPPORTED BY NATIONAL SCIENCE FOUNDATION