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Meshes vs. Mesh-free discretizations

Structured meshes:
FD,  DG, FV, Spectral Elements
Requires domain decomposition / 
curvilinear mappings

Unstructured meshes:
FEM,  DG, FV, Spectral Elements
Improved geometric flexibility; requires 
triangles, tetrahedral, etc.

Mesh-free:
RBF-FD 
(Radial basis Func.-generated Finite Differences)
Total geometric flexibility; 
needs node locations, but no connectivites, 
e.g. no triangles or mappings



Scattered data in 2D            Collocate RBF, e.g. 2D Gaussians      Find linear combination of RBF 
that fits all the data

General RBF-FD Concept

On a sphere In a 3D



Simplicity of RBF-FD: Mesh-Free method

Get Gaussian matrix A, use Gaussian elimination to solve for weights 

Ex.:  Stencil of n = 21 nodes

z

x

!"#(−&'(() !"#(−&'(') . . . !"#(−&'(+)
⋮ ⋱ ⋮

!"#(−&'+() !"#(−&'+') . . . . !"#(−&'++)

.(
⋮
.+

=
0/0"[!"# −&'( ]|

⋮
0/0"[!"# −&'+ ]|

1   2

xn



IDX = knnsearch(xyz,xyz,'K',n);    % n is stencil size
for k  = 1:N % Loop over all points N in domain 

X   = xyz(IDX(k,:),:);  % nodes in the kth stencil
r2  = (X(:,1) - X(:,1)').^2 + …

(X(:,2) - X(:,2)').^2 + …
(X(:,3) - X(:,3)').^2 ;            % Distance matrix

A   = exp(-r2); % RBF-FD matrix
RHS_dx = -2*(X(:,1) – X(k,1)).* exp(-r2);   % derivative of GA w.r.t x,y,z
RHS_dy = -2*(X(:,2) – X(k,2)).* exp(-r2);
RHS_dz = -2*(X(:,3) – X(k,3)).* exp(-r2);

Dx(k,:) = A\RHS_dx;   % Differentiation matrices (DM)
Dy(k,:) = A\RHS_dy;    
Dz(k,:) = A\RHS_dz;  

end

Coding RBF-FD Method is FAST and EASY

Have DMs for any geometry and point distribution in 3D space 



Translating Static Node Refinement (Flyer and Lehto, 2010, JCP)

!ℎ/!$ = &(( )*$. , )-./. , $) 1 2ℎ
http://web.maths.unsw.edu.au/~rsw/Sphere/





Method N Dt (mins.) RMS error

RBF, refined 900 60 5e-3

RBF, ME 3136 60 4e-3

RBF, MD 3136 60 5e-3

DG 9600 6 7e-3

FV 38,400 30 2e-3

FV, AMR 2500 to 165K Variable 2e-3

Comparison between ME, MD, Refined, and other methods



How we Cluster Nodes and Variable Shape Parameter

! "#$. ∝ sech+ "#$. tanh "#$. / "#$. =  [0.1 + 0 *! "#$. ]-1

When clustering nodes, the shape parameter of the Gaussian Exp[- (er)2 ] must 
scale over the domain to avoid ill-conditioned matrices and Runge phenomena

Rule-of-Thumb: e ∝ Inverse of Euclidean distance to nearest neighbor

Fine features in flow are formed where ! is large 
use ! to assign charge distribution for node repel

! "#$. 2

! "#$. / "#$. Node distribution 2



RMS Error, N = 1849

Effect of Clustering on Error

c = 0.1 c = 1 c = 10 c = 100



Dynamic Node Refinement: Simple Tropical Cyclogenesis 
(in collaboration with Erik Lehto)

- We do not know apriori where fine features will occur
- Need a good Monitor Function for node adaptation 
- Generally, takes the form ! = !($%),   % is a physical feature of the flow

Barotropic Vorticity Equation

= streamfunction
= relative vorticity

! ', ), * = a is a scaling parameter



Steps in implementation 
1. ! at a given time is approximated with RBFs
2. Assign charge distribution according 1/! and repel
3. Evaluate solution at new pts. via RBF interpolation
4. Calculate spatially variable e and recalculate RBF differentiation matrices

3500km x
3500km

Separation
Dist: 400km



3500km x
3500km

Separation
Dist: 410km



Coupled Reaction-diffusion equations over irregular surfaces (Piret, JCP 2012)

The Brusselator equations (Alan Turning) model pattern formation in nature, 
Solved by RBF over the surface of a frog

Snapshots from a computed time evolution for two different parameter regimes

Tabasara rain frog Poison dart frog

- RBF Node layout
- AIM@Shape Online

Repository



Movie Courtesy of Grady Wright



Node generation algorithms

Iterative-Type Schemes
For a given number of nodes, 
the quality of the distribution
depends on how soon 
the iteration is stopped.
- Min. energy distribution
- Voronoi relaxation
- Delaunay triangulations 
• DistMesh (Persson-Strang)
• Gmsh (Geuzaine-Remacle)

Advancing-Front Type Schemes
For a given number of nodes, 
Start at a boundary and advance 
forward until the domain is filled.

- Dithering for half-tone images

Half-tone image  Human eye

Notice nice hex pattern. 
Instead of changing width of
dots, we change density
of dots. We start at bottom
boundary and march 
upward until domain is filled



Distributing variable node density on sphere
(Fornberg and Flyer, 2015)

Below: Gray scale rendering of the file topo.mat
in Matlab’s Mapping toolbox

Top right: Advanicng Front Algorithm

N = 105,419 nodes rendering of the topo map above
Computational speed in MATLAB still around
11,000 nodes per second.

Next step in modeling (Bayona et al. 2015) :
Take elevation physically taken into account



52 km

8 km

3D Node Layout
Topography to 
8km

Nested spherical 
shells
8km to 52km

Conductivity   Elec. potential
Thunderstorm sources
(NASA measured data)

(s(x,y,z)           u)   =   S(x,y,z)

3D Elliptic PDE:  Modeling Electrical Currents in the Atmosphere



Sparsity pattern of 3D elliptic operator (99.998% zeros) 

Before any node reordering After using reverse Cuthill- McKee

Result:  Testing with data, 4.2M nodes
100 km. lat. – long. By   600m vertical, 31 mins on laptop using GMRES 

GitHub Open Source Code:   Bayona et al. , A 3-D RBF-FD solver for modelling the atmospheric Global 
Electric Circuit with topography (GEC-RBFFD v1.0), Geosci. Model Dev. 2015.

3D node layout

Nested Shell

Nicely banded
but GMRES
CRASHES



2D Compressible Navier-Stokes with Topography using RBF-FD

Schematic node layout



Movie Courtesy of Gregory A. Barnett

Simulation of a cold downdraught in a dry atmosphere at 300K 
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